Pomeron physics in AdS/QCD

Jeff Harvey
Cambridge March 22, 2010

based on arXiv:09071084 and work in progress with Sophia Domokos and Nelia Mann
Outline

- The data and previous fits, summary of results
- QCD, string theory, and Regge theory
- The Pomeron
- Recipe for p-p elastic scattering in AdS/QCD
- Fitting to data
- Computation of parameters in a dual model
- Thoughts about Central Production
Large s $p\bar{p}$ elastic scattering data

\[\frac{d\sigma}{dt} \text{(mb GeV}^{-2}) \]

- $\sqrt{s} = 1800$ GeV
- $\sqrt{s} = 546$ GeV
- $\sqrt{s} = 62$ GeV
- $\sqrt{s} = 53$ GeV
- $\sqrt{s} = 31$ GeV

t (GeV2)
A complete theory would tell us how to construct the invariant amplitudes $A^{pp}(s, t), A^{p\bar{p}}(s, t)$ and we would then compute:

$$\frac{d\sigma}{dt} = \frac{1}{16\pi s^2} |A(s, t)|^2 \quad \sigma_{tot} = \frac{1}{s} \Im A(s, 0) \quad \rho(s) = \frac{\Re A(s, 0)}{\Im A(s, 0)}$$

and compare to data, e.g.
The data is usually fit/modelled by one of 4 methods

\[\log \left(\frac{d\sigma}{dt} \right) \]

\[\sqrt{s} = 62 \text{ GeV} \]

Experimental papers:

\(d\sigma / dt = ae^{bt} \) at fixed \(s \), sometimes with different \(b \) for different ranges of \(t \).

Donnachie&Landshoff: Regge fit to Pomeron exchange using EM form factor

\[d\sigma / dt = C[F_1(t)]^4(\alpha's)^{2\alpha(t)-2} \]

with \(\alpha(t) \approx 1.08 + .25t \) plus Reggeons.

Khoze, Martin& Ryskin: Eikonal methods, multiple Pomeron exchange, triple Pomeron couplings...it is complicated.
It is difficult in any of these approaches to obtain a fit with a satisfactory \(\chi^2 / \text{dof} \) because of discrepancies between different data sets, issues of combining systematic errors with statistical errors and so on. In addition, the fits are mainly phenomenological with only general principles of analyticity and Regge theory to guide them.

In addition there is ``sieving'' of the data and sophisticated statistical ranking of models that is not easy for a novice to decipher.

\[
\frac{d\sigma}{dt} \text{(mb GeV}^{-2})
\]

Some of the data sets disagree:
Summary of our Results:

- We assume single Pomeron exchange, but derive a form factor related to matrix elements of the stress-tensor, and compute the prefactor from AdS/QCD.

- We compute parameters in the Sakai-Sugimoto model.

- We end up with a reasonable fit to large s data in the Regge regime. Some parameters fit well, others point to a (known) discrepancy between the open and closed string sectors.
QCD and String Theory

Even before AdS/CFT there was a great deal of both experimental and theoretical evidence that QCD has a dual description in terms of string theory.

Theory: At large N_c QCD has an infinite tower of narrow resonances of arbitrarily high spin. The $1/N_c$ expansion is a topological expansion as in string theory.

Experiment: To a good approximation hadrons sit on linear Regge trajectories, $J = \alpha_0 + \alpha' M^2$, and many scattering processes exhibit Regge behavior at large s, fixed t.

AdS/QCD: We now have dual models which seem to correctly describe parts of QCD. They have obvious flaws, but allow computations which were previously out of reach. We will study one more such calculation.
Regge theory is the red-headed stepchild in the second marriage of string theory and QCD.

It is of course connected with analyticity in J and S-matrix theory. But, we can also think of it as a method to obtain the Regge behavior expected in a dual string theory in terms of a small number of parameters in a way that is consistent with general principles. There is a lot of successful phenomenology which should be updated with insight from AdS/QCD.
The leading meson Regge trajectories lie on straight lines at positive t and exhibit EXchange Degeneracy (EXD) with trajectories of both even and odd spin having roughly the same slope and intercept.
It should be noted that most calculations in AdS/QCD are done in the gravity (plus massless open string fields) approximation since we don’t know how to solve string theory in these backgrounds. It is clear that this approximation is not valid in the real world because there is no separation of scales between the string scale $\alpha' \simeq 0.84 \text{ GeV}^{-2}$ and the typical scale of higher KK modes of the massless fields $M_{KK} \simeq 1 \text{ GeV}$ in Sakai-Sugimoto, or $1/z_m \simeq 346 \text{ GeV}$ in the hard wall model.

Regge theory gives us a framework for incorporating some stringy effects into these models.
In 2-2 scattering at small $|t|$ we could try to exchange this tower of mesons, but exchange of spin J leads to amplitudes $\sim s^J$. Regge theory replaces this infinite sum of badly behaved amplitudes by a pole in the complex angular momentum plane at $J = \alpha(t)$.

The linearity of trajectories at positive t extends to small negative t with the same slope and intercept.

$$\frac{d\sigma}{dt} = \beta(t)(s)^{2\alpha(t)-2}$$

The linearity of the trajectory at $t < 0$ can be verified by using data to extract the effective trajectory from a plot of $\text{Log}(d\sigma/dt)$ vs. $\text{Log}(s)$.
The Pomeron

The Pomeron is a Regge trajectory introduced by Chew and Frautschi in 1961 to account for the then approximate constant behavior of total cross sections with increasing s. This was inconsistent with the known trajectories with $\alpha_R(0) \simeq 0.55$ since total cross sections behave like $s^{\alpha_R(0)-1}$ and required a new trajectory with vacuum quantum numbers and an intercept $\alpha_P \simeq 1$.

It is natural to identify this trajectory at positive t with glueball states and the Regge behavior at small negative t with closed string exchange in a string dual description of QCD. The lowest state on the leading trajectory is a 2^{++} glueball.
Total cross sections are well fit with two powers, one for Reggeon exchange with intercept $\alpha_R(0) \approx 0.55$ and one for Pomeron exchange with intercept $\alpha_P(0) \approx 1.08$ (Donnachie-Landshoff following earlier work of Collins, Gault and Martin).
There have been efforts (BPST) to use AdS/QCD ideas to connect the large negative t region of perturbative QCD/hard pomeron/BFKL to the positive t region of linear glueball trajectories. Unfortunately the most phenomenologically interesting region of small negative t is also the most model dependent. The following picture is not inconsistent with the analysis of BPST and we will exhibit some experimental evidence to support it.

Given a regime with a linear trajectory at small negative t we are led to a recipe for the Pomeron contribution to p-p scattering in the Regge limit.
Recipe for p-p scattering in the Regge regime

1 dual model of QCD
4 protons treated as Skyrmions
1 spin 2 glueball extracted from a 5d graviton
1 closed string four point amplitude

Preheat two incoming protons to the desired c.o.m. energy. Compute the glueball wavefunction and its coupling to the proton stress tensor. Compute the stress tensor matrix elements and extract the dominant form factor in the Regge regime. Use this to calculate tree-level glueball exchange and extract a kinematic factor. Mix this into the dual amplitude, extract the Reggeized propagator and substitute this into the previously computed tree amplitude. Compare with data. Antiprotons may be substituted for protons according to taste.
In dual descriptions of QCD the 2^{++} glueball state arises as a mode of the 5D graviton. By definition, this perturbation couples to the 5D stress tensor. We assume (tensor meson dominance), and show explicitly in a specific model, that when reduced to 4D this leads dominantly to a coupling of the 2^{++} state to the proton stress-energy tensor. The p-p-glueball vertex then involves

$$\langle p', s' | T_{\mu\nu}(0) | p, s \rangle =$$

$$\bar{u}(p', s') \left[A(t) \gamma_{(\mu} P_{\nu)} + B(t) \frac{iP_{(\mu} \sigma_{\nu)} \rho q^\rho}{2m_p} + C(t) \frac{q_\mu q_\nu - \eta_{\mu\nu} q^2}{m_p} \right] u(p, s)$$
In the Regge limit of large s and fixed t the first form factor dominates. Tree-level exchange of the spin two glueball, but including this form factor at the vertices, leads to

\[
\frac{d\sigma}{dt} = \frac{\lambda^4 A^4(t) s^2}{\pi (t - m_g^2)^2}
\]

where λ governs the strength of the coupling of the glueball to the stress-energy tensor.

The form factor is model dependent, but in most models the form factors at small t are well fit by a simple dipole formula

\[
A(t) = \frac{1}{(1 - t/M_d^2)^2},
\]
Four point closed string amplitudes in the bosonic or superstring can be written in the general form

\[A(s, t) \sim \frac{\Gamma[-\alpha(s)]\Gamma[-\alpha(t)]\Gamma[-\alpha(u)]}{\Gamma[-\alpha(t) - \alpha(s)]\Gamma[-\alpha(t) - \alpha(u)]\Gamma[-\alpha(u) - \alpha(s)]} K^{(1, 2, 3, 4)} \]

where \(\alpha(x) \) is a linear function of \(x \) and \(K(1, 2, 3, 4) \) is a polynomial in the momenta and polarization vectors/spinors of the initial and final states. This form is crossing symmetric.

This formula cannot be correct at large \(s \). It violates unitarity, and at large \(s \) and fixed \(t \) we expect the whole glueball trajectory to contribute to the differential cross section. We need Regge theory, or we can use string theory as a short cut.
We assume the same general form holds for closed string exchange in a curved space dual of QCD.

- **Linearity:** \(\alpha(x) = a_0 + a'x \)

- **First pole is spin 2 glueball:** \(-a_0/a' = m_g^2 \)

- **Mass shell:** \(\alpha(s) + \alpha(t) + \alpha(u) = a'(4m_p^2 - 3m_g^2) \equiv \chi \)

- **\(K \sim s^2 \) and residue of pole \(\sim s^J \) identifies**

\[J = \alpha_0 + \alpha't \quad \text{with} \quad \alpha_0 = 2 + 2a_0, \quad \alpha' = 2a' \]
With these identifications we then take the Regge limit of the resulting amplitude and use this to obtain a prescription for “Reggeizing the propagator”

\[
\frac{1}{t - m_g^2} \rightarrow -\frac{a' \Gamma[-\chi] \Gamma[-\alpha(t)]}{\Gamma[\alpha(t) - \chi]} e^{-i\pi \alpha(t)} (a' s)^{2\alpha(t)}
\]

This agrees with the Feynman propagator at \(\alpha(t) \sim 0 \) and has an infinite sequence of poles at \(\alpha(t) = n \) corresponding to exchange of massive spin \(J = 2n + 2 \) particles lying on a linear Regge trajectory.

We now combine this with our previous tree-level computation of spin two glueball exchange including the gravitational form factor.
We are then left with our final form for the Pomeron contribution to the differential cross-section for pp or $p\bar{p}$ scattering in the Regge regime:

$$
\frac{d\sigma}{dt} = \left(\frac{\lambda^4 A^4(t)}{\pi} \right) \left(\frac{\Gamma^2[-\chi]\Gamma^2[-\alpha(t)]}{\Gamma^2[\alpha(t) - \chi]} \right) (a's)^{4\alpha(t)+2}
$$

In principle, with the correct dual and enough technical strength we would compute all four parameters, $a_0, a', \lambda, M_{dip}$, and compare with data. At present the best we can do is to compute λ, M_{dip} in a specific dual theory, fit a_0, a' to data, and compare our fit with previous results.
Comparison to DL Model

Many papers cite a Pomeron exchange fit due to Donnachie and Landshoff:

\[
\left(\frac{d\sigma}{dt} \right)_{DL} = \frac{(3\beta F_1(t))^4}{4\pi} \left(\frac{s}{s_0} \right)^{2\alpha(t)-2}
\]

with \(F_1(t) \) the electromagnetic form factor of the proton

\[
F_1(t) = \frac{4m_p^2 - 2.79t}{4m_p^2 - t} \frac{1}{(1 - t/0.71)^2}
\]

We will fit the DL model to the same data set, varying \(\beta, \alpha_0, \alpha' \) rather than using their quoted values.
Extracting the trajectory from the data shows that it is quite linear for $|t| < 0.6$, has a flattish region, and then does something crazy. We will only try to fit data in the linear regime.
How well does our model fit the data? We don’t want to try to model the full details of lower s data so we estimate the Reggeon contribution as a function of s and add this “error” in quadrature to the statistical errors and then do a chi squared fit to the resulting data. We find:

DHM fits

<table>
<thead>
<tr>
<th></th>
<th>both data sets</th>
<th>just E710</th>
<th>just CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>1.076 ± 0.016</td>
<td>1.074 ± 0.016</td>
<td>1.086 ± 0.016</td>
</tr>
<tr>
<td>α'</td>
<td>0.290 ± 0.006 GeV$^{-2}$</td>
<td>0.286 ± 0.006 GeV$^{-2}$</td>
<td>0.300 ± 0.006 GeV$^{-2}$</td>
</tr>
<tr>
<td>M</td>
<td>0.983 ± 0.016 GeV</td>
<td>0.970 ± 0.016 GeV</td>
<td>1.02 ± 0.016 GeV</td>
</tr>
<tr>
<td>λ</td>
<td>4.28 ± 0.03 GeV$^{-1}$</td>
<td>4.31 ± 0.03 GeV$^{-1}$</td>
<td>4.14 ± 0.03 GeV$^{-1}$</td>
</tr>
<tr>
<td>$\chi^2_{d.o.f.}$</td>
<td>1.65</td>
<td>1.41</td>
<td>1.26</td>
</tr>
</tbody>
</table>

DL fits

<table>
<thead>
<tr>
<th></th>
<th>both data sets</th>
<th>just E710</th>
<th>just CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>1.076 ± 0.013</td>
<td>1.075 ± 0.013</td>
<td>1.082 ± 0.018</td>
</tr>
<tr>
<td>α'</td>
<td>0.289 ± 0.003 GeV$^{-2}$</td>
<td>0.289 ± 0.003 GeV$^{-2}$</td>
<td>0.289 ± 0.003 GeV$^{-2}$</td>
</tr>
<tr>
<td>β</td>
<td>1.858 ± 0.016 GeV$^{-1}$</td>
<td>1.877 ± 0.016 GeV$^{-1}$</td>
<td>1.801 ± 0.020 GeV$^{-1}$</td>
</tr>
<tr>
<td>$\chi^2_{d.o.f.}$</td>
<td>1.97</td>
<td>1.66</td>
<td>1.79</td>
</tr>
</tbody>
</table>
Best fit to differential cross section

\[\ln \frac{d\sigma}{dt} \]

- \(\sqrt{s} = 1800 \text{ GeV} \)
- \(\sqrt{s} = 546 \text{ GeV} \)
- \(\sqrt{s} = 62 \text{ GeV} \)
- \(\sqrt{s} = 53 \text{ GeV} \)
- \(\sqrt{s} = 31 \text{ GeV} \)

\[
\begin{align*}
\alpha(0) & = 1.086 \pm .0016 \\
\alpha' & = .300 \pm .006 \text{ GeV}^{-2} \\
M_d & = 1.02 \pm .016 \text{ GeV} \\
\lambda & = 4.14 \pm .04 \text{ GeV}^{-1} \\
\frac{\chi^2}{dof} & = 1.26
\end{align*}
\]
Total cross section:

The total cross section is

\[\sigma_{tot} = \frac{4\pi \lambda^2 \Gamma[-\chi]}{\Gamma[1 + a_0] \Gamma[a_0 - \chi]} (a's)^{1+2a_0} \equiv Cs^b \]

The best fit values from fit to \(d\sigma/dt \) :
\[b = .085, \ C = 21.32 \]

Compare to fits to total cross section

Our fit to both 1800 sets:
\[b = .076, \ C = 23.73 \]

just E710:
\[b = .074, \ C = 24.43 \]

just CDF:
\[b = .086, \ C = 21.10 \]

DL fit:
\[b = .081, \ C = 21.70 \]
Prediction for \[\rho = \frac{\Re A(s, t = 0)}{\Im A(s, t = 0)} \rightarrow - \cot a_0 \pi = 0.136, \ s \to \infty \]

Reggeon's dependence

Data Points

\[p + p \rightarrow p + p \]

\[p + \bar{p} \rightarrow p + \bar{p} \]
Quick Summary of Sakai-Sugimoto Model

\(N_c\) color D4-branes (replaced by SUGRA background)

\[
ds^2 = \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^\mu dx^\nu + f(U) d\tau^2 \right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^2}{f(U)} + U^2 d\Omega_4^2\right)
\]

\[e^\phi = g_s \left(\frac{U}{R}\right)^{3/4}, \quad F_4 = dC_3 = \frac{2\pi N_c}{V_4} \epsilon_4, \quad f(U) = 1 - \frac{U^3_{KK}}{U_3}
\]

\(N_f\) flavor D8-branes have profile in \((U, \tau)\) (geometric realization of chiral symmetry breaking).

Fix \(M_{KK}, g_s\) in terms of \(m_\rho, f_\pi\)
Fields appearing in our analysis

Bulk

- h_{MN}
 - 10d graviton

- $h_{\mu\nu}(x, U)$

- $h_{\mu\nu}^{(n)}(x) T_n(U)$

- 2^{++} glueball plus KK tower

Brane

- A_M
 - 9d gauge field

- $A_\mu(x, U)$

- $A_\mu^{(n)}(x) \psi_n(U)$

- $\varphi_0(x) \psi_0(U)$

- KK tower of vector and axial-vector mesons

- Massless pions

Look at this coupling
Quantities we can compute:

- a_0 / a' (from glueball mass)
- λ (from graviton-Skyrmion couplings)
- M_d (from Skyrmion stress-tensor)

Do each in turn and compare to best fit values
Glueball Mass

Perturb around D4-brane background metric \(h_{\mu\nu}(x) T(U) \) and solve eigenvalue eq's to compute glueball mass (Constable, Myers; Brower, Mathur, Tan):

\[
\partial_U \left(U^4 f(U) \partial_U \left[\left(\frac{R}{U} \right)^{3/2} T(U) \right] \right) = -m_g^2 \frac{R^{9/2}}{U^{1/2}} T(U)
\]

Lowest eigenvalue gives mass of lowest \(2^{++} \) glueball

\[
m_g = 1.57 \quad M_{KK} = 1.49 \text{ GeV}
\]

Fit value: \(m_g|_{\text{fit}} = \sqrt{\frac{-a_0}{a'}} = 1.75 \text{ GeV} \) both below value expected from lattice QCD
Graviton-Pion Coupling

A generalized Skyrme model arises naturally from the DBI action so we treat protons as Skyrmions

Decompose fields and substitute into DBI action:

\[A_\mu(x, U) = U^{-1}(x) \partial_\mu U(x) \psi_+(U) + \cdots \]

\[h_{\mu\nu}(x, U) = h_{\mu\nu}(x) T(U) \]

\[U(x) = e^{-i\pi(x)/f_\pi} \]

\[S_{D8} \propto \int d^4x h_{\mu\nu}(x) \text{Tr}(A_\mu(U^{-1} \partial_\mu U)(U^{-1} \partial_\nu U) + B_h[U^{-1} \partial_\mu U, U^{-1} \partial_\nu U][U^{-1} \partial_\nu U, U^{-1} \partial_\rho U]) \]

\[= \lambda \int d^4x \ h_{\mu\nu}(x) T^{\mu\nu} + \text{small corrections} \]
Glueball-proton coupling

Overlap integral from SS yields

$$\lambda = 0.39 f_\pi^{-1} = 8.36 \text{ GeV}^{-1}$$

Compare to fit value

$$\lambda|_{\text{fit}} = 4.14 \pm 0.04 \text{ GeV}^{-1}$$
Dipole mass from the Skyrme model

In the Regge limit the first structure function dominates:

$$\langle p' s' | T_{\mu \nu} | p, s \rangle = \bar{u}(p', s') \left[A(t) \gamma_{(\mu} P_{\nu)} + \ldots \right] u(p, s)$$

We did not compute $A(t)$ in the full SS model, but it has been computed in the Skyrme model (Cebula et.al.) and in a certain approximation in the soft-wall model (Abidin and Carlson). It is well approximated by a dipole form:

$$A(t) = \frac{1}{(1-t/M_d^2)^2}, \quad M_d = 1.17 \text{ GeV}$$

Fit value:

$$M_d = 1.02 \pm 0.016$$
I have tried to present the parameters in the worst possible way, meaning the discrepancies we find between the coupling λ and the glueball mass are based on fitting the parameters of the Sakai-Sugimoto model to the open string sector, that is to f_π and the mass of the ρ rather than to data from the closed string sector. The discrepancy between the open and closed string parameters was recognized earlier. The model has other faults, perhaps this is one more of them. Or it could be that an improved theoretical understanding (e.g. including the tachyon field) would change the dilaton profile and ameliorate these problems.
Conclusions

- Studied pp scattering using AdS/QCD to compute coupling and form factor.
- Provided a new, conceptual explanation of the form factor which should appear in p-p scattering via Pomeron exchange.
- Tests coupling of open-closed string sectors in a dual model of QCD.
- There are interesting generalizations to central production of mesons via anomalous couplings.
The central production of mesons (\(p + p \rightarrow p_f X p_s \)) has been extensively studied by the WA76, WA91, WA102 in a regime of large s, and small momentum transfer \(t_i \) at the vertices where it should be dominated by Pomeron or Reggeon exchange:

If we focus on the production of pseudoscalar or axial-vector mesons then there is a natural bulk coupling which should determine the double Pomeron exchange contribution.
In the Sakai-Sugimoto model, or in any QCD dual, there is a coupling needed to reproduce the gravitational contribution to the axial anomaly:

$$\frac{N_c}{48} \int \text{Tr} F_A \ [p_1(R)]^{(0)}$$

and when reduced to a 4d this leads to couplings between spin two glueball and pseudoscalar or axial-vector mesons.

At large s one expect double Pomeron exchange to dominate over Pomeron-Reggeon or Reggeon-Reggeon by powers of \sqrt{s}, s but numerical factors arising in the gravitational chiral anomaly make it seem likely that the experiments were not at large enough s for double Pomeron exchange to dominate ($\sqrt{s} \simeq 29 \text{ GeV}$)
\[\partial_\mu j_5^\mu = \frac{1}{8\pi^2} \tilde{F}^{\mu\nu} F_{\mu\nu} - \frac{1}{384\pi^2} \tilde{R}^{\mu\nu}_{\sigma\tau} R_{\mu\nu}^{\sigma\tau} \]

The natural parity violating couplings of mesons to other mesons are larger than those of glueballs to mesons. Still, AdS/QCD can be used to compute couplings and form factors which previously had to be treated as input parameters to phenomenological Regge fits to the data.

The LHC will operate at energies where Pomeron physics should be clearer theoretically, although harder to extract experimentally. The LHC will study higher-dimensional gravitational physics, although not quite in the sense that some people have predicted.
$s = 196 \text{ TeV}^2$

$\sigma_{\text{tot}} = 109 \pm 4 \text{ mb}$